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Abstract—A decentralized event-triggered control scheme is
developed for the containment control problem. An estimate-
based decentralized controller is designed for each agent so that
it is only required to communicate with neighboring agents at
discrete event times. These events are determined by a decen-
tralized trigger function that only requires local information.
Different from conventional strategies, the developed control
approach does not require continuous communication with
local neighboring follower agents for state feedback, reducing
communication bandwidth. The event-triggered approach is
facilitated by developing a positive constant lower bound on the
inter-event interval, which indicates Zeno behavior is avoided.
A Lyapunov-based convergence analysis is provided to indicate
asymptotic convergence of the developed strategy.

I. INTRODUCTION

Various applications can be facilitated through the use
of a team of collaborative agents. Ideally, communication
required for navigation and control of the agents is minimized
to maximize the available bandwidth for other mission objec-
tives (e.g., relaying sensing data). Towards this objective, net-
work control approaches have been developed using strate-
gies that only require local communication (e.g., from one
and two hop neighbors), and leader/follower strategies where
follower agents have partial feedback information [1]–[4].
For example, the containment control problem considered
in this paper focuses on a decentralized strategy in which
a subgroup of agents (i.e., followers) must remain within
a finite region spanned by another subgroup (i.e., leaders),
where the leader states are only communicated to a subset of
followers (i.e., followers that have leader neighbors). How-
ever, even for the decentralized containment control problem,
most existing solutions (cf. [4]–[8]) require continuous state
feedback to be communicated from neighboring agents for
decentralized implementation.

To reduce inter-agent communication, real-time scheduling
methods, called event-triggered approaches (cf. [9], [10]),
can be applied on an as-needed basis to reduce continuous
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state feedback. Typically in event-triggered control, the con-
trol task is executed when the ratio of a certain error norm
to the state norm exceeds a threshold. As a result, when
compared to traditional continuous feedback methods, event-
triggered execution yields a minimum inter-event interval.

Motivated by the desire to reduce communication traf-
fic and the controller updates, event-triggered results have
been developed for multi-agent systems in [11]–[17]. How-
ever, these applications target the same average consensus
problem with a leaderless network and require continuous
communication with neighboring agents for event detection.
Therefore, these event-triggered approaches may not miti-
gate communication congestion for a large scale network.
These results are extended in [18] for a dynamic leader,
intermittent communication, and communication-free event
detection. However, it is unclear how to directly extend the
approaches in [11]–[18] to the containment control problem.
This paper develops an approach for containment control
without continuous communication.

Similar to the development in [18], this paper develops
a decentralized estimator-based event-triggered containment
control approach where every follower agent has model-
based state estimators dwelling at its neighboring agents as
well as itself. These distributed estimators follow the same
dynamics as the leader and are synchronized by simultaneous
updates at discrete events. Since the follower agents know
how far the state estimates are away from its true state,
it can communicate its true state to these estimates when
necessary, but not vice versa (i.e., neighboring agents have
no authority to request updates). This event is generated by a
decentralized, estimate-based, event-triggered function. As a
result, any follower agent has a decentralized, estimate-based,
piecewise continuous controller, which is discontinuous at
the event times whenever broadcasting its state to, or receiv-
ing estimate updates from, the neighboring agents is required.
Therefore, no inter-agent communication is required between
any two event times. A lower bounded minimum inter-
event interval can be developed, and a convergence analysis
shows that the individual agent requires only intermittent
communications for asymptotic convergence.

This paper builds on the event-triggered strategy in [18];
however, this paper is focused on the more general contain-
ment control problem where multiple leaders are included
in the network. In both papers, the dynamics of the agents,
communication mechanism, and the proof of minimum inter-
event interval are identical; however, the controller design
and stability analysis in this paper are unique due to the
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generalization of multiple leaders. While this paper inves-
tigates a more general multiple-leader containment control
problem, unlike [18], the topology in this paper is assumed to
be fixed. It is currently unclear how to leverage the switched
topology strategy in [18] to the current containment control
result because of the time-varying links between the leaders
and followers.

II. PRELIMINARIES

A. Preliminaries

To describe the interaction between follower nodes, an
undirected graph GF = (VF , EF ) is defined, where VF ,
{1, . . . , F} is the index set of the F follower nodes, and
EF ⊆ VF × VF is the corresponding edge set. An undi-
rected edge (i, j) is an element of EF if i, j ∈ VF can
exchange information mutually. Without loss of generality,
the undirected graph is assumed to be simple (i.e., (i, i) /∈ E ,
∀i ∈ VF ). A path is a sequence of connected edges in
a graph. Graph GF is connected if there exists a path
between any two nodes in GF . The follower neighbor set
NFi , {j ∈ VF | (j, i) ∈ EF} is a set of follower nodes
that can deliver information to agent i. An adjacency matrix
AF = [aij ] ∈ RF×F of graph GF is defined such that
aii = 0, aij = aji = 1 if (j, i) ∈ E , and aij = aji = 0
otherwise. The Laplacian matrix of graph GF is defined
as L1 = [lij ] ∈ RF×F , where lii =

∑
j 6=i aij and

lij = −aij , i 6= j. To describe the interaction topology
of all nodes, a directed graph G = (VF ∪ VL, EF ∪ EL)
is defined as a supergraph of GF formed by connecting an
additional edge (k, i) ∈ EL to GF if the leader k ∈ VL
communicates information to the follower i ∈ VF , where
VL , {F + 1, . . . , F + L} is the indexed set of the leader
nodes, and EL ⊆ VL × VF is a leader-follower edge set.
The leader neighbor set NLi , {j ∈ VL | (j, i) ∈ EL} is a
set of leaders that can deliver information to follower i. The
adjacency matrix A = [aij ] ∈ R(F+L)×(F+L) of graph G is
also defined such that aii = 0, aij = 1 if (j, i) ∈ EF ∪ EL,
and aij = 0 otherwise. Similar to L1, the Laplacian matrix of

graph G can be expressed as L =

[
LF LL

0L×F 0L×L

]
, where

LL ∈ RF×L , 0 is the zero matrix of defined dimensions,
and LF , L1 + D ∈ RF×F is a symmetric matrix, where
D = [dij ] ∈ RF×F is a diagonal matrix defined such that
dii =

∑
l∈VL ail and dij = 0 for i 6= j.

To facilitate the subsequent analysis, the following lemma
from [5] is provided.

Lemma 1. [5] If graph G is connected, then the symmetric
matrix LF is positive definite.

B. Dynamics

Consider a network system composed of F follower agents
and L leader agents, with dynamics

ẋi = Axi +Bui, i ∈ VF (1)
ẋi = Axi, i ∈ VL (2)

where xi ∈ Rn and ui ∈ Rm denote the state and control
input of agent i, respectively, B ∈ Rn×m is a full column
rank matrix, and A ∈ Rn×n is a state matrix.

Assumption 1. The dynamics of the agents are controllable,
or the pair (A, B) is stabilizable.

Assumption 2. Each follower has directed paths from at
least one leader.

III. DEVELOPMENT OF THE EVENT-TRIGGERED
DECENTRALIZED CONTROLLER

The containment control objective is to ensure the states
of all the followers converge to the convex hull spanned by
the leaders’ states, such as [4]∥∥xF +

(
L−1F LL ⊗ In

)
xL
∥∥→ 0 as t→∞. (3)

In this section, an event-triggered based decentralized con-
troller is developed to minimize the inter-agent communica-
tion while achieving the containment control objective de-
fined in (3). Different from conventional approaches, event-
triggered control methods generate a piecewise continuous
control signal, where the discontinuities are due to the state
estimate updates. The discrete events are generated from
the satisfaction of a triggering condition. The triggering
condition in this paper is designed based on insights from
the Lyapunov-based state convergence analysis.

A. Controller design

Based on the subsequent convergence analysis, the de-
centralized event-triggered controller for agent i ∈ VF is
designed as

ui = Kẑi (4)

ẑi =
∑
j∈NFi

(x̂j − x̂i) +
∑
j∈NLi

(xj − x̂i) , i ∈ VF , (5)

where K is the control gain designed as

K = BTP. (6)

Based on Assumption 1, P ∈ Rn×n is a symmetric positive
definite matrix that satisfies the following Riccati inequality

PA+ATP − 2δminPBB
TP + δminIn < 0, (7)

where I is an identity matrix with denoted dimension, and
δmin ∈ R+ denotes the minimum eigenvalue of LF , where
LF is positive definite based on Assumption 2 and Lemma
1.

In (5), the followers that are connected to the leader can
continuously receive information from the leader, and the
computation of ẑi in (5) only requires the estimates of agent i
and its neighboring followers’ state (i.e., x̂j∈NFi

), instead of
using their true states xj∈NFi

via continuous communication.

5445



The estimate x̂j in (5) evolves according to the following
dynamics

˙̂xj (t) =Ax̂j (t) , j ∈ NFi ∪ {i} , t ∈
[
tjk, t

j
k+1

)
, (8)

x̂j

(
tjk

)
=xj

(
tjk

)
, (9)

for k = 0, 1, 2 . . . ., where x̂j flows along the leader
dynamics during t ∈

[
tjk, t

j
k+1

)
and is updated via xj com-

municated from neighboring agent j at its discrete times tjk,
for j ∈ NFi. Although agent i ∈ VF does not communicate
the estimate x̂i, agent i maintains x̂i for implementation
in (5). The estimate x̂i is updated continuously with the
dynamics in (8) and discretely at time instances described
in (9). Therefore, ui is a piecewise continuous signal, which
has discontinuities when state information is transmitted to,
or received from, neighboring agents for estimate updates;
otherwise, ui flows continuously during the inter-event in-
tervals. The generation of the event times will be described
in Section III-C.

B. Dynamics of estimate errors

Since xi follows different dynamics from the estimate x̂i
for i ∈ VF , an estimate error ei ∈ Rn characterizing the
mismatch is defined as

ei(t) , x̂i (t)− xi(t), i ∈ VF , t ∈
[
tik, t

i
k+1

)
, (10)

where ei is reset to 0 at the event time tik, k = 0, 1, 2, . . ..
Although xi and x̂i are both known for agent i, using x̂i
enables agent i to judge how far another x̂i in its neighboring
agent is away from its actual state xi. Using (1), (4), and (8),
the time-derivative of (10) can be expressed as

ėi =A (x̂i − xi)−BK
∑
j∈NFi

(x̂j − x̂i)

−BK
∑
j∈NLi

(xj − x̂i) , t ∈
[
tik, t

i
k+1

)
,

which has a stacked form of

ė = (IF ⊗A) e+ (IF ⊗BK) ε+ (LF ⊗BK) e, (11)

where e ∈ RnF denotes e ,
[
eT1 , e

T
2 , . . . , e

T
F

]T
, ⊗ denotes

the Kronecker product, and ε ∈ RnF is a stacked form of εi
defined as ε ,

[
εT1 , . . . , ε

T
F

]T
, where εi ∈ Rn represents

the relative neighboring state tracking error as

εi ,
∑

j∈NFi∪NLi

(xi − xj) , i ∈ VF , (12)

which has a stacked form

ε = (LF ⊗ In)xF + (LL ⊗ In)xL. (13)

C. Event-triggered communication mechanism

A follower agent’s state estimate is updated whenever
communication is triggered by a neighbor’s trigger condition
or its own trigger condition. Please see Section III-C of [18]
for further details on the communication mechanism. The
triggered condition is defined in Section IV.

D. Closed-Loop error system

Using (10), a non-implementable form (to facilitate the
subsequent analysis) of (4) can be written as

ui (t) =K
∑

j∈NFi∪NLi

[(xj (t)− xi (t)) + (ej (t)− ei (t))] ,

(14)

where ej∈VL = 0 due to continuous communication from
leaders. Substituting (14) into the open-loop dynamics in (1)
yields

ẋi =Axi +BK
∑

j∈NFi∪NLi

(xj (t)− xi (t))

+BK
∑

j∈NFi∪NLi

(ej (t)− ei (t)) ,

or equivalently

ẋF = (IF ⊗A)xF − (LF ⊗BK)xF

− (LL ⊗BK)xL − (LF ⊗BK) e (15)
ẋL = (IF ⊗A)xL, (16)

where xF ,
[
xT1 , . . . , x

T
F

]T ∈ RnF , xL ,[
xT1 , . . . , x

T
L

]T ∈ RnL are the stacked states of the follower
and leader agents, respectively. Using (15) and (16), the
closed-loop error system can be expressed as

ε̇ = (LF ⊗ In) ẋF + (LL ⊗ In) ẋL

= (LF ⊗ In) [(IF ⊗A)xF − (LF ⊗BK)xF

− (LL ⊗BK)xL − (LF ⊗BK) e]

+ (LL ⊗ In) (IF ⊗A)xL

= [(IF ⊗A)− (LF ⊗BK)] ε−
(
L2
F ⊗BK

)
e, (17)

where (13) is used.
To facilitate the subsequent convergence analysis, an al-

ternative form of (13) associated with an auxiliary function
ẑ ,

[
ẑT1 , . . . , ẑ

T
F

]T ∈ RnF is developed. Based on (10) and
(12), the relative state tracking error can be expressed as

εi =
∑
j∈NFi

[(x̂i − ei)− (x̂j − ej)]

+
∑
j∈NLi

[(x̂i − ei)− xj ]

=− ẑi −
∑
j∈NFi

(ei − ej)−
∑
j∈NLi

ei, i ∈ VF , (18)

where ẑi is defined in (5). The stacked form of εi in (18)
can be expressed as

ε = −ẑ − (LF ⊗ In) e, (19)

where ẑ is governed by the dynamics

˙̂z = (IF ⊗A) ẑ, (20)

where (5), (8), (16), and the property of the Kronecker
product (A⊗B) (C ⊗D) = (AC ⊗BD) were used.
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IV. CONVERGENCE ANALYSIS

In this section, the event-triggered controller designed in
(4) is examined using a Lyapunov-based analysis. In addition
to proving convergence of the error signal ε, the analysis
also establishes a trigger condition associated with a trigger
function that establishes when agents communicate state
information.

To facilitate the subsequent convergence analysis, the event
time tk is explicitly defined below.

Definition 1. An event time tik is defined as

tik , inf
{
t > tik−1 | fi (t) = 0

}
, i ∈ VF (21)

for k = 1, 2 . . . ., where ti0 = 0, and fi (·), denoted as
fi (ei (·) , ẑi (·)), is a trigger function defined as

fi (ei (t) , ẑi (t)) , ‖ei (t)‖ −

√√√√ηi

(
δ1 − k2

β

)
(k1 + k2β)

‖ẑi (t)‖ ,

(22)

where ηi ∈ R>0 satisfying 0 < ηi ≤ 1 is a weighting term1,
and β ∈ R>0 is a positive constant satisfying

β >
k2
δ1
. (23)

In (22), k1, k2 ∈ R are positive constants defined as

k1 , Smax

(
L3
F ⊗

(
2PBBTP

)
− L2

F ⊗ δ1
)

(24)

k2 ,
1

2
Smax

(
LF ⊗ 2δ1In − L2

F ⊗
(
2PBBTP

))
, (25)

where δ1 ∈ R>0 satisfies 0 < δ1 < δmin, and Smax (·)
denotes the maximum singular value of a matrix argument.

Theorem 1. The controller designed in (4) ensures asymp-
totic containment control defined in (3) provided that the
estimate x̂i in (4) is updated at tik defined in (21), for i ∈ VF .

Proof: Consider a candidate Lyapunov function V :
RnF → R defined as

V , εT (IF ⊗ P ) ε, (26)

where P is defined in (7). Using (6) and (17), the time
derivative of (26) can be expressed as

V̇ =εT
[
IF ⊗

(
PA+ATP

)
− LF ⊗

(
2PBBTP

)]
ε

− eT
[
L2
F ⊗

(
2PBBTP

)]
ε. (27)

Using (7), (27) can be upper bounded by

V̇ ≤− δminε
T ε− eT

[
L2
F ⊗

(
2PBBTP

)]
ε. (28)

1ηi is a weighting term that has a trade-off between convergence
performance and the size of inter-event interval. That is, moving ηi close
to 1 can increase the inter-event interval, but the convergence performance
is compromised, and vice versa.

Using (19), (28) can be upper bounded by

V̇ ≤− δ1
[
ẑT ẑ + 2eT (LF ⊗ In) ẑ + eT

(
L2
F ⊗ In

)
e
]

− eT
[
L2
F ⊗

(
2PBBTP

)]
[−ẑ − (LF ⊗ In) e]

− δ2εT ε
≤− δ1ẑT ẑ − δ2εT ε

+ eT
[
L3
F ⊗

(
2PBBTP

)
−
(
L2
F ⊗ δ1

)]
e

− eT
[
(LF ⊗ 2δ1In)− L2

F ⊗
(
2PBBTP

)]
ẑ, (29)

where δ2 ∈ R>0 satisfies δ1 + δ2 = δmin. By using the
inequality xT y ≤ ‖x‖ ‖y‖ , (29) can be upper bounded as

V̇ ≤− δ1 ‖ẑ‖2 + k1 ‖e‖2 + 2k2 ‖e‖ ‖ẑ‖ − δ2εT ε, (30)

where k1 and k2 are defined in (24) and (25). Using the
inequality ‖x‖ ‖y‖ ≤ β

2 ‖x‖
2

+ 1
2β ‖y‖

2, (30) can be upper
bounded by

V̇ ≤− δ1 ‖ẑ‖2 + 2k2

(
β

2
‖e‖2 +

1

2β
‖ẑ‖2

)
+ k1 ‖e‖2

− δ2εT ε

≤−
(
δ1 −

k2
β

)
‖ẑ‖2 + (k1 + k2β) ‖e‖2 − δ2εT ε

≤−
∑
i∈VF

[(
δ1 −

k2
β

)
‖ẑi‖2 − (k1 + k2β) ‖ei‖2

]
− δ2εT ε. (31)

In (31), two necessary conditions for V̇ to be negative
definite are to enforce δ1 − k2

β > 0 and

‖ei‖2 ≤
ηi

(
δ1 − k2

β

)
(k1 + k2β)

‖ẑi‖2 , (32)

which are satisfied provided the sufficient conditions in (21)-
(23) are satisfied. Provided (32) is satisfied, then (31) can be
rewritten as

V̇ ≤−
∑
i∈VF

(1− ηi)
(
δ1 −

k2
β

)
‖ẑi‖2 − δ2εT ε, (33)

≤− δ2εT ε. (34)

The linear differential inequality resulting from (26) and (34)
can be solved to conclude that

‖ε‖ ≤ ‖ε (t0)‖ e−γ(t−t0),

where γ ∈ R>0 is a positive constant. Therefore, from (13)
the convergence of ε implies (3).

Remark 1. The Riccati inequaty defined in (7) and used in
(28) is developed to facilitate the stability analysis.

V. MINIMUM INTER-EVENT INTERVAL

To show the proposed trigger functions in Definition 1
do not lead to Zeno behavior, it is sufficient to find a
positive lower bound for the inter-event interval. To facilitate
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subsequent analysis, two constants c̄0, c̄1 ∈ R>0 are defined
as

c̄0 ,Smax (IF ⊗BK) (35)

c̄1 ,Smax ((IF ⊗A) + (LF ⊗BK)) + Smax (LF ⊗BK)

+ Smax (IF ⊗A) . (36)

Theorem 2. The event time defined in (21) ensures that there
exists an agent h ∈ VF such that its minimum inter-event
interval τ ∈ R is lower bounded by

τ ≥ 1

max {c̄0, c̄1}
ln

 1

F

√√√√ηh

(
δ1 − k2

β

)
(k1 + k2β)

+ 1

 , (37)

where h is an agent that satisfies

h = arg max
i∈V

sup
t∈R≥0

‖ẑi‖ ,

and F is the number of follower agents defined in Section
II-A.

Proof: For further details, please see [19, Theorem 2].
Remark 2. This lower bound implies that Zeno behaviors
can be excluded. However, there is a trade-off between the
minimum inter-event interval and the error convergence rate.
The lower bound in (37) can be increased by selecting a
higher ηh, but this increase results in a slower convergence
due to the fact that V̇ in (33) becomes less negative. Every
agent has the freedom to adjust its ηh to make the minimum
inter-event interval flexible.

VI. DISCUSSION

A decentralized event-triggered control scheme for the
containment control problem is developed to reduce commu-
nication frequencies between neighboring agents while en-
suring stability of the system. The estimate-based controller
along with the decentralized trigger function reduces the
number of inter-agent communication events, during which
no communication is required. A Lyapunov-based analysis
indicates that the networked system achieves asymptotic con-
tainment control under this event-triggered control scheme
where the trigger condition does not exhibit Zeno behavior.
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