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Abstract—A decentralized controller that uses event-
triggered scheduling is developed for the leader-follower con-
sensus problem under switching communication topologies. To
reduce inter-agent communication, a feedback controller is
designed based on state estimates of neighboring agents that are
updated by scheduled communication. The state estimates are
updated when the network topology switches or a decentralized
trigger condition is met. The trigger condition is designed such
that the control requires reduced inter-agent communication
for feedback while still achieving leader-follower consensus
under switching topologies. Since the control strategy produces
switched dynamics, analysis is provided to show that Zeno
behavior is avoided by developing a positive constant lower
bound on the minimum inter-event interval. A Lyapunov-based
convergence analysis is also provided to indicate asymptotic
convergence of the developed control methodology.

I. INTRODUCTION

To increase efficiency and speed, a group of robots can
cooperate to perform a task, wherein the coordination and
control of the agents rely on network communication. Cen-
tralized communication architectures facilitate global behav-
iors by networked agents; however, such strategies exacer-
bate network congestion when compared to decentralized
approaches. In decentralized communication architecture,
each agent uses only local communication (e.g., one-hop
neighbors) (cf. [1]–[4]). A network leader can be included
in decentralized architectures where only a subset of the
agents communicate with and follow the leader (cf. [1]–[4]).
However, most decentralized network control approaches (cf.
[5]–[7]) rely on continuous inter-agent communication for
control feedback.

To further reduce bandwidth usage, real-time scheduling
methods, also called event-triggered approaches (cf. [8], [9]),
can be applied instead of continuous state feedback. In
event-triggered control, the control task is executed when
a triggering condition is met, which is typically when the
ratio of the norm of some error to the state norm exceeds a
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predefined threshold. The earliest event-triggered strategies
applied to control a multi-agent system are in [10] and [11].
However, the potential bandwidth minimizing advantages are
compromised because verifying the event triggering condi-
tion requires constant communication. These results were
later extended to directed and undirected graphs in [12] and
[13], but in these works the triggering condition requires a
priori knowledge of the Fiedler value and the final consensus
value. These requirements were relaxed in [14] and [15] by
designing a new trigger function using the sum of relative
states from neighbors. In [16], a time-based triggering func-
tion (i.e., a time-dependent threshold) is introduced to ensure
asymptotic convergence to a neighborhood of the average
consensus value. A similar time-varying threshold is applied
in [17] for a directed time-varying communication topol-
ogy under neighbor-synchronous and asynchronous updating
protocols. However, the strategies in [10]–[17] solve the
leaderless average consensus problem. The more challenging
leader-follower consensus control problem is investigated
in [18], but the leader state is assumed to be stationary,
which limits applicability; additionally, constant neighbor
communication is used to detect the trigger condition, which
mitigates the benefits of the event-triggered control strategy.

In practice, unpredictable physical constraints (e.g., equip-
ment failure, environmental factors) can cause intermittent
communication. Since these additional discrete events in-
troduce discontinuous dynamics into the system, a switched
event-triggered controller for the hybrid system is motivated.
However, it is unclear how to directly extend the strategies
in the aforementioned results that assume a fixed topology.

A decentralized controller using state-estimate feedback
is developed in this paper to reduce communication band-
width. The estimators are updated by scheduled inter-agent
communication. The communication events happen when the
network topology switches or the decentralized triggering
condition is met. The triggering condition is designed based
on a stability analysis and ensures that no communication is
necessary between two event times. A convergence analysis
shows that the controller requires only intermittent commu-
nication while still achieving leader-follower consensus with
asymptotic convergence. Part 2 of this work in [19] extends
this event-triggered approach to the multiple leader problem
for a fixed network topology.
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II. PRELIMINARIES AND PROBLEM STATEMENT

A. Algebraic Graph Theory Preliminaries

A directed graph Ḡ consists of a finite node set V , defined
as V , {1, 2, · · · , N}, and an edge set E , where E ⊆
(V × V) is a set of paired nodes. An edge, denoted as (i, j),
implies that node j can obtain information from node i, but
not vice versa. On the contrary, the graph G is undirected if
(i, j) ∈ E implies (j, i) ∈ E , and vice versa. The neighbor
set of agent i is defined as Ni , {j ∈ V | (j, i) ∈ E , j 6= i} .

A directed path is a sequence of edges in a graph. An undi-
rected path of the undirected graph is defined analogously. A
undirected graph is connected if there exist a undirected path
between any two distinct nodes in the graph. An adjacency
matrix A = [aij ] ∈ RN×N of the directed graph is given
by aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. For
the undirected graph, aij = aji. For both the directed and
undirected graph, aii = 0 holds, and furthermore, it is
assumed that aij = 1 if (j, i) ∈ E . The Laplacian matrix
of the graph G is defined as L = [lij ] ∈ RN×N , where
lii =

∑
j 6=i aij and lij = −aij , where i 6= j.

B. Dynamics

Consider a network system consisting of N followers
and a leader, where the interaction topology is time-varying,
and only a small subset of the follower agents have direct
accesses to the leader’s states. The dynamics of the N
followers are described by

ẋi = Axi +Bui, (1)

where xi ∈ Rn and ui ∈ Rm denote the state and control
input of agent i, respectively, B ∈ Rn×m is a full column
rank matrix, and A ∈ Rn×n is a state matrix. The leader,
indexed by 0, has dynamics given by

ẋ0 = Ax0, (2)

where x0 ∈ Rn denotes the leader’s state.

Assumption 1. The dynamics of the follower agents are
controllable, or the pair (A, B) is stabilizable.

C. Definition and Assumptions

The time-varying interaction topology of the N followers
described in (1) can be modeled by a switched undirected
graph Gσ , where the piecewise constant switching signal σ :
[0, ∞) → P indicates an underlying graph from a finite
set P , {1, 2, . . . , M} at time t, such that {Gp : p ∈ P}

includes all graphs in
{
∪
t≥0
G
}

.

Similarly, the time-varying interaction topology of the
leader-follower system described in (1)-(2) is modeled by
a directed switching graph denoted as Ḡσ , which consists of
the node set V ∪{0} and the edge set that contains all edges
in Gσ and the edges connecting node 0 and the followers that
have a directed edge from the leader.

Definition 1. A directed graph is connected if each follower
has a directed path from the leader.

Assumption 2. Ḡp is connected for each p ∈ P .

Assumption 3. The switching signal σ has a finite number of
switches in a finite time interval. Specifically, σ switches at
tq and is invariant during a non-vanishing interval [tq, tq+1),
q = 0, 1, . . ., with t0 = 0, 0 < µ < tq+1 − tq < T ,
where µ, T ∈ R are positive constants, and µ is a non-
vanishing dwell-time. Additionally, the switching sequence
of σ is arbitrary.

D. Conventional Approach and Control Objective

A decentralized controller for the system in (1) and (2) can
be developed using conventional continuous feedback such
as in [5], for example, as

ui = K
∑
j∈Ni

(xj − xi) +Kdi (x0 − xi) , i ∈ V, (3)

where K ∈ Rm×n is the control gain matrix designed in
the subsequent analysis, and di = 1 if agent i ∈ V is
connected to the leader, di = 0 otherwise. Note that this
control implementation requires continuous state feedback
from the neighboring agents.

The leader-follower consensus problem is achieved if the
network system described in (1) and (2) satisfies

εi → 0 as t→∞, i ∈ V, (4)

where εi , xi − x0 ∈ Rn represents the leader-follower
consensus error for agent i.

III. DEVELOPMENT OF THE EVENT-TRIGGERED
DECENTRALIZED CONTROLLER

To eliminate the need for continuous communication while
achieving the control objective, an event-triggered based
decentralized control approach is developed. Instead of con-
tinuous state feedback, the developed decentralized controller
is a piecewise continuous input signal, where inter-agent
communication is required only at discrete events. These
events include topology switches and triggered events when
the decentralized trigger condition is met, and the design of
this trigger condition is based on insights from the Lyapunov-
based state convergence analysis.

A. Controller Design

Motivated by conventional continuous feedback controller
as in (3) and based on the subsequent convergence analysis,
a decentralized event-triggered controller for agent i ∈ V is
designed as

ui = Kẑi, (5)

ẑi =
∑
j∈Ni

(x̂j − x̂i) + di(x0 − x̂i), (6)

where the followers that are connected to the leader can
continuously receive x0 from the leader. In contrast to the
controller in (3), the computation of ẑi for the controller in
(5) only requires the estimates of agent i and its neighbor-
ing followers’ state estimate (i.e., x̂j∈Ni ), instead of using
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their true states xj∈Ni via continuous communication. The
estimate x̂j in (6) evolves according to the dynamics

x̂j

(
tjE

)
=xj

(
tjE

)
(7)

˙̂xj =Ax̂j , t ∈
[
tjE , t

j
E+1

)
, j ∈ {i} ∪ Ni (8)

tjE =

{
tq,

tjk,

if j is a new neighbor
otherwise

, (9)

for E, k = 0, 1, 2 . . ., where x̂j is updated via xj commu-
nicated from neighboring agent j at its discrete times tjE and
flows along the leader dynamics during t ∈

[
tjE , t

j
E+1

)
, for

j ∈ Ni. In (9), tq is the time when Ḡσ switches, and tjk is
the event-triggered time of the follower agent j described in
Section III-C. Although agent i ∈ V does not communicate
the estimate x̂i, agent i maintains x̂i for implementation
in (6). The estimate x̂i is updated continuously with the
dynamics in (8) and discretely at time instances described
in (7). Therefore, ui is a piecewise continuous signal, where
communication is required when any new one-hop neighbor
is connected or when state information is transmitted to, or
received from, neighboring agents for estimate updates; oth-
erwise, ui flows continuously during the inter-event intervals.
Remark 1. In (9), since the link between two follower
neighbors is undirected, j ∈ Ni implies i ∈ Nj . That is,
mutual communication is conducted at tq if j ∈ Ni is a new
neighbor.

B. Dynamics of Estimate Error

Since xi follows different dynamics from the estimate
x̂i computed by its neighbors, an estimate error ei ∈ Rn
characterizing this mismatch is defined as

ei , x̂i − xi, i ∈ V, t ∈
[
tiE , t

i
E+1

)
, (10)

where ei is reset to 0 at tiE due to the estimate updates.
Although xi and x̂i are both known for agent i: using x̂i
enables agent i to judge how far a neighbor’s estimate of
xi is from its actual state. Using (1), (5), and (8), the time-
derivative of (10) can be expressed as

ėi =A (x̂i − xi)−BK
∑
j∈Ni

(x̂j − x̂i)−BKdi (x0 − x̂i) ,

which can be written in stack form as

ė = (IN ⊗A) e+ (Hσ ⊗BK) ε+ (Hσ ⊗BK) e, (11)

where e ∈ RnN denotes e ,
[
eT1 , e

T
2 , . . . , e

T
N

]T
, I is an

identity matrix with denoted dimension, ⊗ denotes the Kro-
necker product, ε ∈ RnN defined as ε ,

[
εT1 , ε

T
2 , . . . , ε

T
N

]T
is a stack form of εi introduced in (4), and the matrix
Hσ ∈ RN×N is defined as Hσ , Lσ + Dσ , where
Dσ ∈ RN×N is defined as Dσ , diag (d1, d2, . . . , dN ),
and Lσ(t) , L (t). Based on Assumption 1, there exists a
symmetric positive definite matrix P ∈ Rn×n that satisfies
the following Riccati inequality

PA+ATP − 2δminPBB
TP + δminIn < 0, (12)

so that the control gain in (3) can be designed as

K = BTP, (13)

where δmin ∈ R>0 is defined as

δmin , min {δp | p ∈ P} , (14)

denoting the minimum value of a finite set composed of δp,
where δp ∈ R>0 denotes the minimum eigenvalue of Hp and
is a positive constant based on Assumption 2 and [20].

C. Communication Mechanism at Event Times

This subsection describes how the communication between
follower neighbors proceeds during triggered events.

��

��

Figure 1. Inter-agent communication mechanism under the developed
event-triggered approach. The stars and dots represent the instances when
decentralized triggering conditions are satisfied. At the same time, the
triggered agents communicate their states over the network to update
neighbors’ estimates.

In Fig. 1, ‖ei‖‖ẑi‖ is a decentralized, non-negative, and
piecewise continuous signal used to verify the triggering
condition. The detailed design of the trigger condition is
shown in Section IV. The red stars represent the event-
triggered time tik when ‖ei‖‖ẑi‖ reaches a constant ci, designed in
the subsequent analysis. At tik, xi is communicated over the
network to update the estimate x̂i, used by each neighboring
agent j ∈ Ni. Additionally, ‖ei‖‖ẑi‖ is reset to zero at tik
since the updated estimate has no estimate error. Similarly,
at neighbor agent j’s event time tjk, xj is communicated
over the network to update the estimate x̂j . Since ‖ẑi‖
is a decentralized and estimate-based function, verification
of the triggering conditions requires no neighbor state in-
formation, and hence no communication is required during
any inter-event interval (e.g.,

[
ti1, t

j
1

)
,
[
tj1, t

i
2

)
,
[
ti2, t

j
2

)
).

Additionally, when the network topology switches, newly
connected or reconnected neighbors communicate their states
simultaneously for the estimate updates.
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D. Closed-loop error system

Using (10), a non-implementable form (to facilitate the
subsequent analysis) of (5) can be expressed as

ui =K
∑
j∈Ni

[(xj − xi) + (ej − ei)]

+Kdi (x0 − xi)−Kdiei. (15)

Substituting (15) into the open-loop dynamics in (1) and
using the definition in (4) yields the closed-loop error system

ε̇i =Aεi +BK
∑
j∈Ni

(xj − xi) +BKdi (x0 − xi)

+BK
∑
j∈Ni

(ej − ei)−BKdiei,

where the stack form can be expressed as

ε̇ = (IN ⊗A) ε− (Hσ ⊗BK) ε− (Hσ ⊗BK) e. (16)

To facilitate the subsequent analysis, a relation between ε
and ẑ is developed, where ẑ , [ẑ1, ẑ2, . . . , ẑN ]

T ∈ RnN
represents the stack form of ẑi and can be expressed as

ẑ , (Hσ ⊗ In) [1N ⊗ x0 − x̂] , (17)

where x̂ , [x̂1, x̂2, . . . , x̂N ]
T ∈ RnN , and 1N is the ones

vector with denoted dimension. Using the relation εi = x̂i−
ei − x0, the useful expression

x̂− 1N ⊗ x0 = ε+ e (18)

can be obtained. Combining (17) and (18) yields

ε = −
(
H−1σ ⊗ In

)
ẑ − e, (19)

where ẑ is governed by the dynamics

˙̂z = (IN ⊗A) ẑ, (20)

where (2) and (8) were used.

IV. CONVERGENCE ANALYSIS

In this section, convergence of leader-follower consen-
sus with the event-triggered controller designed in (5) is
examined using a Lyapunov-based analysis. In addition to
proving the convergence of the error signal ε, the analysis
also establishes a trigger condition associated with a trigger
function that establishes when agents communicate state
information.

To facilitate the subsequent convergence analysis, the event
time tik is explicitly defined below before proving the main
theorem.

Definition 2. An event-triggered time tik is defined as

tik , inf
{
t > tik−1 | fi (t) = 0

}
, i ∈ V, (21)

for k = 1, 2, . . ., where ti0 = 0, and fi (·), denoted as
fi (ei (·) , ẑi (·)), is a decentralized trigger function defined
as

fi (ei, ẑi) , ‖ei‖ −

√√√√ηi

(
k1 − k3

β

)
k2 + k3β

‖ẑi‖ , (22)

where ηi ∈ R>0 satisfying 0 < ηi < 1 provides flexibility
in real-time scheduling, and β ∈ R>0 is a positive constant
satisfying

β >
k3
k1
, (23)

where ki, i = 1, 2, 3, are positive constants defined as

k1 , min
p∈P

{
δm1Smin

(
H−2p

)}
k2 , max

p∈P

{
Smax

(
Hp ⊗

(
2PBBTP

))
− δm1

}
k3 , max

p∈P

{
Smax

(
IN ⊗

(
2PBBTP

)
−H−1p ⊗ 2δm1In

)}
,

where δm1 ∈ R>0 satisfies 0 < δm1 < δmin such that
k2 > 0 and k3 > 0, and Smin (·) and Smax (·) denote
the minimum and maximum singular value of the matrix
argument, respectively.

Theorem 1. The controller designed in (5) ensures that the
network system in (1) and (2) modeled by the switching graph
Ḡσ achieves asymptotic leader-follower consensus defined in
(4) provided that the estimate x̂i in (5) is updated at tik
defined in Definition 2.

Proof: Consider a Lyapunov function candidate V :
RnN → R defined as

V , εT (IN ⊗ P ) ε, (24)

where P is a symmetric positive definite matrix satisfying
(12). Using (13) and (16), the time derivative of (24) can be
expressed as

V̇ =εT
[
IN ⊗

(
PA+ATP

)
−Hσ ⊗

(
2PBBTP

)]
ε

− eT
[
Hσ ⊗

(
2PBBTP

)]
ε. (25)

Since Hσ∈P is symmetric and positive definite, (12) and (14)
can be used to upper bound (25) as

V̇ ≤ −δminε
T ε− eT

[
Hσ ⊗

(
2PBBTP

)]
ε. (26)

Using (19), (26) can be expressed as

V̇ ≤− δm1ẑ
T
(
H−2σ ⊗ In

)
ẑ − δm1e

T e

+ 2δm1e
T
(
H−1σ ⊗ In

)
ẑ − eT

[
IN ⊗

(
2PBBTP

)]
ẑ

+ eT
[
Hσ ⊗

(
2PBBTP

)]
e− δm2ε

T ε, (27)

where δm2 ∈ R>0 satisfies δmin = δm1 + δm2. By using the
inequality xT y ≤ ‖x‖ ‖y‖, (27) can be upper bounded as

V̇ ≤ −k1 ‖ẑ‖2 + k2 ‖e‖2 + 2k3 ‖e‖ ‖ẑ‖ − δm2ε
T ε. (28)

Using the inequality ‖x‖ ‖y‖ ≤ β
2 ‖x‖

2
+ 1

2β ‖y‖
2
, (28) can

be upper bounded as

V̇ ≤− k1 ‖ẑ‖2 + 2k3

(
β

2
‖e‖2 +

1

2β
‖ẑ‖2

)
+ k2 ‖e‖2

− δm2ε
T ε

≤−
∑
i∈V

[(
k1 −

k3
β

)
‖ẑi‖2 − (k2 + k3β) ‖ei‖2

]
− δm2ε

T ε. (29)
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In (29), two necessary conditions for V̇ to be negative
definite are

0 < k1 −
k3
β

‖ei‖2 ≤
ηi

(
k1 − k3

β

)
k2 + k3β

‖ẑi‖2 , (30)

which are satisfied provided that (21)-(23) are satisfied. Pro-
vided (30) and (23) are satisfied, then (29) can be rewritten
as

V̇ ≤ −
∑
i∈V

(1− ηi)
(
k1 −

k3
β

)
‖ẑi‖2 − δm2ε

T ε, (31)

≤ −δm2ε
T ε, (32)

which implies V is a common Lyapunov function. The linear
differential inequality resulting from (24) and (32) can be
solved to conclude that

‖ε‖ ≤ ‖ε (0)‖ exp (−γt) ,

where γ ∈ R>0 is a positive constant. The exponential
convergence of ‖ε‖ implies (4).
Remark 2. Based on (22), the constant ci in Fig. 1 can be

designed as ci =

√
ηi(k1− k3β )
k2+k3β

. At tik, ei will be reset to zero
as agent i communicates its state xi to all its neighboring
agents to update x̂i, and hence ‖ei‖‖ẑi‖ = 0 (i.e., fi < 0). After
the update, ‖ei‖ grows in time until meeting the next trigger
condition ‖ei‖‖ẑi‖ = ci (i.e., fi = 0). Then, the cycle repeats.

V. NO ZENO EXECUTION

Zeno execution is defined as infinite switches in a finite
interval. Exclusion of Zeno execution can be sufficiently
proven by finding a positive lower bound between any two
contiguous discrete events (i.e.,

[
tjE , t

j
E+1

)
) [10]. Based on

Assumption 3, graph switches never cause Zeno execution
(i.e., µ < tq+1 − tq). Therefore, only the following three
intervals smaller than µ are analyzed.

Case 1. Consider any inter-event interval
[
tjk, t

j
k+1

)
,

where 0 < tjk+1 − tjk < µ. This interval is proven to be
lower bounded by a positive constant in Theorem 2.

Case 2. Consider any inter-event interval
[
tq, t

j
k+1

)
, for

0 < tjk+1 − tq < µ. By (9), a new neighbor agent j ∈ Ni
has a mutual communication at tq , at which time ej is reset
to zero. Therefore, tq can be considered as the instant tjk,
which implies Case 1 and Case 2 are equivalent.

Case 3. Consider any inter-event interval
[
tjk, tq

)
, for

0 < tq − tjk < µ. Then, the next cycle must be
[
tq, t

j
k+1

)
since tjk+1 comes earlier than tq+1. Therefore, proving a

positive lower bound of the interval
[
tq, t

j
k+1

)
implies no

Zeno execution since infinite switches can not happen in
the finite interval. Moreover, finding the lower bound of[
tq, t

j
k+1

)
is equivalent to proving Case 2.

Based on the three cases above, Zeno execution can be
excluded provided that Theorem 2 is proven. To facilitate the
subsequent analysis, two constants c̄0, c̄1 ∈ R>0 are defined
as

c̄0 ,max
p∈P
{Smax (A)} (33)

c̄1 ,max
p∈P
{Smax ((IN ⊗A) + (Hp ⊗BK))

+Smax (Hp ⊗BK) + Smax (A)} . (34)

Theorem 2. The event-triggered time defined in (21) ensures
that there exists an agent h ∈ V such that the interval[
thk , t

h
k+1

)
is lower bounded by

τ ≥ 1

max {c̄0, c̄1}
ln

 1

N

√√√√ηh

(
k1 − k3

β

)
(k2 + k3β)

+ 1

 ,

where τ , thk+1 − thk ∈ R>0 is the minimum interval, h is
an agent that satisfies

h = arg max
i∈V

sup
t∈R≥0

‖ẑi‖ .

Proof: Since ‖eh‖ ≤ ‖e‖ , the following inequality
holds [10]

‖eh‖
N ‖ẑh‖

≤ ‖e‖
N ‖ẑh‖

≤ ‖e‖
‖ẑ‖

,

which is equivalent to

‖eh‖
‖ẑh‖

≤ N ‖e‖
‖ẑ‖

. (35)

For any interval t ∈
[
thk , t

h
k+1

)
, ‖e‖‖ẑ‖ is continuous. To show

the inter-event interval is lower bounded as in [8], one can
investigate the time derivative of ‖e‖‖ẑ‖ over the interval t ∈[
thk , t

h
k+1

)
as

d

dt

(
‖e‖
‖ẑ‖

)
=

d

dt

(eT e) 1
2

(ẑT ẑ)
1
2

 ≤‖ė‖
‖ẑ‖

+
‖e‖

∥∥∥ ˙̂z
∥∥∥

‖ẑ‖2
. (36)

Substituting ė and ˙̂z from (11) and (20) into (36) yields

d

dt

(
‖e‖
‖ẑ‖

)
≤‖(IN ⊗A) e+ (Hσ ⊗BK) ε+ (Hσ ⊗BK) e‖

‖ẑ‖

+
‖e‖ ‖(IN ⊗A) ẑ‖

‖ẑ‖2
.

Using (19) to replace ε and applying the inequality xT y ≤
‖x‖ ‖y‖ yields

d

dt

(
‖e‖
‖ẑ‖

)
≤‖(IN ⊗A) + (Hσ ⊗BK)‖ ‖e‖

‖ẑ‖

+ ‖(IN ⊗BK)‖+ ‖(Hσ ⊗BK)‖ ‖e‖
‖ẑ‖

+ ‖(IN ⊗A)‖ ‖e‖
‖ẑ‖

,
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which can be further expressed as

ẏ ≤ max {c̄0, c̄1} (1 + y) , (37)

where y : [0, ∞) → R≥0 is a non-negative, piecewise
continuous function, which is differentiable at the inter-event
interval and is defined as

y
(
t− thk

)
,
‖e (t)‖
‖ẑ (t)‖

, for t ∈
[
thk , t

h
k+1

)
(38)

for k = 0, 1, 2 . . . . Based on (37), a non-negative function
φ : [0, ∞)→ R≥0, satisfying the differential equation

φ̇ = max {c̄0, c̄1} (1 + φ) , φ (0) = y0, (39)

can be lower bounded by y as

y ≤ φ, for t ∈ [0, τ) , (40)

where y0 ∈ R≥0 is the initial condition of y, which is 0
since e

(
thk
)

= 0. An analytical solution to (39) with initial
condition φ (0) = 0 can be solved as

φ (t) = exp (max {c̄0, c̄1} t)− 1. (41)

Using (40) and (41) with t→ τ yields

lim
ϕ→0+

y (τ − ϕ) ≤ exp (max {c̄0, c̄1} τ)− 1. (42)

Using (22) where fh
(
thk+1

)
= 0, (35), and (38) yields

1

N

√√√√ηh

(
k1 − k3

β

)
k2 + k3β

≤ exp (max {c̄0, c̄1} τ)− 1,

which implies that τ is lower bounded by a positive constant

τ ≥ 1

max {c̄0, c̄1}
ln

 1

N

√√√√ηh

(
k1 − k3

β

)
k2 + k3β

+ 1

 . (43)

This lower bound implies that Zeno behaviors can be ex-
cluded. However, there is a trade-off between the minimum
inter-event interval and the error convergence rate. The lower
bound in (43) can be increased by selecting a higher ηh,
but this increase results in a slower convergence due to the
fact that V̇ in (31) becomes less negative. Thus, agent h
may adjust ηh to obtain either quicker convergence or less
frequent communication.

VI. DISCUSSION

A decentralized event-triggered control scheme for the
leader-follower network consensus problem is developed
to reduce communication with neighboring agents while
ensuring the stability of the system. The estimate-based
decentralized controller along with the decentralized trigger
function reduces the number of inter-agent communications
and prevents potential communication channel overload. A
Lyapunov-based stability analysis indicates that the network
system achieves asymptotic leader-follower consensus under
this event-triggered control scheme. Moreover, the trigger
function is proven to never exhibit Zeno behavior.
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