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Abstract

Two-dimensional near-incompressible steady lid-driven cavity flows (Re=100-7,500) are simulated
using multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK method (LBGK). Results
are compared with those using single-relaxation-time (SRT) model in the LBGK method and previous
simulation data using Navier-Stokes equations for the same flow conditions. Effects of variation of
relaxation parameters in the MRT model, effects of number of the lattice points, improved computational
convergence and reduced spatia oscillations of solution near geometrically singular points in the flow field
using LBGK method due to MRT model are highlighted in the study. In summary, lattice Boltzmann method
using MRT model introduces much less spatial oscillations near geometrical singular points, which is

important for the successful simulation of higher Reynolds number flows.
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I.INTRODUCTION

The lattice Boltzmann equation (LBE)
using relaxation technique was introduced by
Higuerea and Jimenez [1] to overcome some
drawbacks of lattice gas automata (LGA) such
as large statistical noise, limited range of
physical parameters, non-Galilean invariance,
and implementation difficulty in
three-dimension problem. In the origina
derivation of LBE using relaxation concept, it
was strongly connected to the underlying LGA.
But it was soon recognized that it could be
constructed independently [2]. Since then, the
| attice Boltzmann methods (LBM) have received
considerable attention as an aternative to
traditional computational fluid dynamics for
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simulating certain complex flow problems. The
simplest LBE is the lattice
Bhatnager-Gross-Krook (LBGK) equation [3],
based on a singlerelaxation-time (SRT)
approximation. Due to the extreme simplicity,
the lattice BGK (LBGK) equation [4] has
become the most popular lattice Boltzmann
model in spite of its deficiencies, for example, in
simulating high-Reynolds numbers flow.

In the LBM, fluid is modeled by particles
moving on a regular lattice. At each time step
particles propagate to neighboring lattice sites
and re-distribute their velocities in a loca
collison phase. The inherent locality of the
scheme makes it perfect for parallel computing
[5], whose advantage will be taken in the current
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study. Through Chapman-Enskog multi-scale
expansion [6], the complicated, nonlinear
compressible Navier-Stokes equations can be
recovered from the simple, linear LBGK
equation based on the assumptions that, first,
Mach number is small, and, second, the density
varies slowly in the flow field. Thus, the LBM
has been applied mostly to compute the flow
field in near-incompressible limit. In particular,
the LBGK method has been successfully applied
to problems of near-incompressible flows
through porous media [7], multiphase flows [8]
and dynamics of droplet breakup [9], to name a
few.

However, there exist some deficiencies in
solving higher Reynolds number incompressible
flow problems or resolving flow fields near
geometrically singular points using
single-relaxation-time (SRT) LBM [10,11]. On
one hand, the fluid density is required to be
nearly constant for nearly incompressible flows
and the pressure is proportional to the local
density field. On the other hand, pressure and
shear stress are singular near the geometrically
singular points (e.g., sharp corners). Hence, it
often causes unphysical, strong local spatial
oscillations near these singular points, which
turns out to contaminate the flow field far away
from these singular points. Previous work
originally developed by D'Humieres [11], and
further extended by Lallemand and Luo [12]
suggests that the use of a multi-relaxation-time
(MRT) model can improve the numerica
stability and reduce dramatically the unphysical
oscillations for some simple flows. They
concluded that using MRT model in the LBM in
these simple flows can significantly reduce the
gpatial oscillation near the singular points and
improves the quality of the solution at higher
Reynolds number. However, there is no
systematic study in revealing the limits of
applying the MRT model in the LBM for higher
Reynolds number flows, which have
complicated flow features.

II.NUMERICAL METHOD

I1.1 Lattice Boltzmann Method with SRT
model

LBM method solves the microscopic
kinetic equation for particle distribution f(x,vt),
where x and v is the particle position and
velocity vector, respectively, in phase space (x,v)
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and time t, where the macroscopic quantities
(velocity and density) are obtained through
moment integration of f(x,vit). The most
popular used LBM equation is the
single-relaxation-time LBGK model [4], and
listed as follows,

f,(X+eAt,t + At) — . (X,t) =
— o[ ,(%,t) ~ £3(X,1)]

(1)

where f (x,t) and f%(x,t) ae the particle

distribution function and the equilibrium particle
distribution function of the i-th discrete particle

velocity vi, respectively, & isadiscrete velocity

vector and o = At

T
Note that 7isthe collision relaxation time.

is the collision frequency.

The 9-velocity LBE model on the 2-D
square lattice (Fig. 1), denoted as the D2Q9
model, is used in the current study for smulating
the steady lid-driven cavity flow. For isothermal
near-incompressible flows, the equilibrium
distribution function can be derived as the
following form [6]:

e.0s2

= 3_ _ _ 3 _ _
fieq(x,t):p'vvi[1+ge|-u+2 . q-u)z—Eu-u](z)

where w; is a weighting factor, U is the fluid
Ax_ay
At

the lattice streaming speed, and Ax, Ay and At
are the lattice width, height and advancing time

velocity and ¢ = , for square lattice, is

step, respectively. In addition, the discrete
velocities for D2Q9 model are
(0,0) i =0,rest particle
€ =1:(%c,0),(0,xc) i=1234
(xc,*c) i =56,78

and the values of the weighting factorsw; are

4/9 i =0,rest particle
w, ={1/9 i=1234 (4)
1/36 i =56,7,8

The density and velocities can be computed
simply by moment integration as

p=2 =2 1 ©)
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Application of the multi-scale technique
(Chapman-Enskog  expansion) yields the
Navier-Stokes equation with the pressure

C  and an advection term
3

p=pcZ, where ¢ -

with Galilean invariance. The viscosity of the
simulated fluid is y = At - 2)e? = (= L anye?.
o 2°° 2

However, the simplicity has to pay the price of
necessarily using sguare lattices of constant
spacing (Ax=Ay) and consequently lead to the
unity of the Courant-Fridrich-Levy (CFL)
number dueto Ax = Ay = At.

With the choice of viscosity in the above,
Eg. (1) is formaly a second order method
(excluding the boundary conditions) for solving
near-incompressible flows [6]. Physical and
numerical constraints requirethat z/At>1/2 or
equivalently o <2.In genera, Eq. (1) is solved
in two steps:

collision step:
(X, t+At) = f (X,t)— 1[ f(x,t) - f2(xt)] (79
T

streaming step:

f (X+BALL+AL) = f, (X,t+At) (7b)
which is known as the LBGK method [13]. Note
that, in the above, * denotes the post- collision
values. It is obvious that the collision process is
completely localized, and the streaming step
requires little computationa effort by advancing
the data from neighboring lattice points that
makes Eq. (1) perfect for paralel implementation,
which will be shown in detail |ater.

Previous experience in obtaining solutions
at higher Reynolds numbers using SRT model of
the LBE method has shown that the solution
field (uvp) often exhibits spurious spatia
oscillations in regions of large gradient such as
stagnation point and sharp concave corners [10].
For example, it has shown that the serious
spatial oscillations of pressure field can be
clearly observed at Reynolds number of 5,000
with 256x256 lattice points at the upper two
concave corners [10]. Depending upon the
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geometry and flow problem, such spatial
oscillation may even propagate to contaminate
the flow solutions in the regions far away from
the singular points. In addition, the spatial
oscillations in the solution can strongly affect
the computational stability and convergence rate.
Of course, the LBE using SRT model can always
improve its computational stability and
convergence by increasing the number of lattice
points in the computational domain, athough it
is not recommended in general. Therefore, to
develop a smilar LBE technique but simple
enough in implementation is strongly required to
resolve the above-mentioned deficiencies.

I1.2 Lattice Boltzmann Method with MRT
model

Recently, Lallemand and Luo [12]
suggested that the use of a MRT model could
improve the numerical stability and reduce
dramatically the unphysical oscillations for some
smple flows. They have performed detailed
theoretical analysis on the dispersion, dissipation
and stability characteristics of a generalized
lattice Boltzmann equation model proposed by
d'Humieres [6]. They have found that the MRT
model is equivalent to the SRT model in the long
wavelength (low wave number) limit for
macroscopic variables of interest in various
simple flows through the linearized analysis [12].
Difference between two relaxation models is
identified as a high-order effect (short
wavelength limit), which can hardly detected in
simple flows. It iswell known that geometrically
and mathematically singular pointes can
adversely affect the flow solution in short
wavelength limit. We would thus expect, at least,
the solution of MRT model near the singular
point is appreciably different from that of SRT
model. For convection-dominated flows, the
local difference near the singularities may also
lead to large differences in flow regimes far
away. Thus, it is important to understand how
the solution using MRT model is different from
that using SRT modd. In addition, it is
potentially useful to compute flows at higher
Reynolds numbers using MRT model in LBM.
In what follows, we will briefly summarize the
important features of MRT model [12] as
compared with those of SRT model.

Lallemand and Luo [12] have defined a
new column vector of macroscopic variables
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ﬁ:(p,e,g,jx,qx,jy,qy,pxx,pxy)T and R can
be relaaed to the column vector of
F=(f,f,f,f,f, 1, f,f, 1) asfollows,

P 1 11 1 1 1 1 1 1Tf,
e -4 -1 2 -1 2 -1 2 -1 2]|f
£ 4 -21 -2 1 -2 1 -2 1|f,
i 0 11 0 -1-1-10 1]|f,

R=|lg,|=|0 -2 1 0 -1 2 -1 0 1|f,
iy 0 0 1 1 1 0 -1 -1 -1|f,
a, 0 0 1-21 0 -1 2 -1|f,
P 0 1.0 -1 0 1 0 -1 0]f,

Py [0 0 1 0 -1 0 1 0 -1ff,]

(8)

where M is a 9x9 matrix transforming F
toR. In the column vector R, pis the fluid

density, ¢ isrelated to the square of the energy
e j, ad j, are the mass flux in two

directions, q, and a, correspond to the

energy flux in two directions, and p, and p,

correspond to the diagonal and off-diagonal
component of the viscous stress tensor. One
immediate advantage of the MRT model is that
macroscopic  variables of interest can be
obtained readily by simply performing the
matrix multiplication MF if F is known. In
addition, due to the conservation of mass and
momentum before and after particle collision,
the total mass and momentum should not relax
a all. However, Eq. (7a) in standard LBGK
method requires al fi's are relaxed at the same
rate and, hence, all macroscopic quantities of
interest. Physically speaking, different physical
modes should have different relaxation rates. By
taking this into account in the MRT model,
based on Eg. (7a), the collision procedure for
R" isperformed asfollows,

P =p-s(p-p)

e =e-s,(e—e*)

& =¢g-s,(e—¢&*)
i = 0= =1, B
d, =9, -S(a,-97") =R-S(R-R%)
iy =i, =Sy =1,
a, =9, -s,(a, —ay")
P = P = S5(Pu — P)
Py = Py —So(Py — Py
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where * denotes the post-collision state, S is
the 9x9 di ggonal matrix, which will be shown
later. In S, s==%=0 enforces mass and
momentum conservation before and after
collision. Note that the equilibrium values in

R can bewritten as[12]

e¥ =-2p+3(u®+v?)

¥ = p—-3(u®+v?)

g =-u (10)
ay! =-v

P =u®-v*

Py =uv

Before the streaming step, Eq. (7b), is performed,
one needs to transform the post-collision values,
R',backto F" by using Eq. (9),

F'=M"'R =F-M"S(R-R*) (11)
where S isthediagonal matrix,

(O 0 00O OO O 0O O]

0s, 00 O OO O O

0 0ss 000 0 0 O
_ /0o 00000 OO (12)
S=l0 0 0 0s;, OO 0 O

0O 0 00 OO0OO O0OTDO

00 00O Os OO

0 0 00 0O OO s O

0 0 00 0O0O0 0 s

Finaly, the streaming step for al fi'sin the MRT
model is performed exactly the same asin the
standard LBGK model using Eq. (7b).

Lallemand and Luo [12] have shown that
the MRT model can reproduce the same
viscosity as that by SRT model if we set
s =S, =Yz . Once thisis decided, the rest of the

relaxation parameters (s,, s,, s, and s,) for

different physical modes can then be chosen
more flexibly. In Ref. 12, they recommended the
values to be dlightly greater than unity. In this
research, we will make some sensitivity study of
these parameters in the current test case to see if
complicated flow has different optimum values.
Finally, it is worthy to note that the MRT model
reduces to the SRT model by simply setting
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I1.3 Boundary conditions

Stationary Wall Boundary Conditions

How to properly implement the wall
boundary conditions within LBM framework is
still an ongoing research topic [14] and reference
cited therein. The most often-used scheme is the
so-called "bounce back™ scheme, which has been
argued that it is only of first-order accuracy as
compared with of second-order accuracy for
LBM formulation. However, it was recently
shown that the error is sufficiently small if the
relaxation parameter o (or 1/t) is chosen to be
close enough to 2 [14]. Thus, we believe that the
bounce-back boundary conditions in the current
study shall not influence the order of accuracy of
LBM using SRT and MRT models if we choose
o to be within some range.

Moving Wall Boundary Conditions

For the current problem, we have assumed
equilibrium distribution function at the upper
moving plate, which is computed by substituting
the uniform plate velocity into Eq. (2) and the
initial density assignment. After streaming, the
velocity at the top plate is reinforced to be the
uniform plate velocity and then the equilibrium
distribution function is reevaluated using the
fixed plate velocity and the updated density at
the plate. In the current study, the upper two
corner lattice points are considered as the part of
the moving plate. The uniform top plate velocity
is U=0.1, considering the validity of using LBM
in simulating near-incompressible flows.

I11. RESULTSAND DISCUSSIONS

To clearly demonstrate and test the
advantages of LBM using MRT model over that
using SRT model, we compute a steady, upper
lid-driven flow (Re=100-7,500) by LBM using
both MRT and SRT models. We compare various
macroscopic variables of interest in regions of
both large and small gradients. In addition,
results from the LBM using MRT and SRT
models are compared with those of N-S solvers
by Ghiaet al. [15] whereit is appropriate.

Fig. 2 demonstrates the typical test of grid
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sensitivity (64x64 and 256x256 lattice points) by
comparing the velocity profiles (Re=1,000) at
the centerline of the cavity for both SRT and
MRT models with the data by Ghia et al. [15],
which has been considered to be the most
comprehensive computation for the impressible
lid-driven cavity flow. It is clearly shown that
the difference of velocity distributions between
the current study and Ghia et al. [15] is very
small at 256x256 lattice points. Also the
difference between MRT and SRT models is
nearly undistinguished at this Reynolds number
of 1,000. Similar trends are found for other
Reynolds numbers up to 7500 for both MRT and
SRT models. Thus, all results discussed in the
followings are computed using 256x256 lattice
points, unless otherwise specified.

Fig. 3 shows the simulated velocity vectors
for Reynolds number of 7500 for both SRT and
MRT models. Note that only MRT model is able
to predict the fourth minor vortex in the lower
right-hand corner, which is also a geometrically
singular point, while SRT model fails to predict
the fourth minor vortex at this corner.

Simulated location (x- and y-coordinate) of
major central vortex as a function of Reynolds
numbers by both SRT and MRT models along with
previous databy Ghiaet al. [15] usingisillustrated
in Fig. 4. The results of the present work and that
of Ghia et al. [15] are in excedlent agreement
within 0.8% for al Reynolds numbers, except for
Re=2000, where the dataiis provided by Ghiaet al.
[15]. In addition, excellent agreement between
STR and MRT modelsisaso found.

Fig. 5 shows the vorticity distribution using
both SRT and MRT modds at Re=7,500. It is clear
that the vorticity digtribution using these two
modelsis approximately the same for Re=100, 400,
1000 and 2000. However, for Re=7,500 (similarly
for Re=5,000), there exists obvious vorticity
"jiggles" around the upper two cavity corners using
SRT model, especialy the left-hand one due to the
geometrical singularity at this corner.

The above-mentioned differences for SRT
and MRT models are highlighted again more
clearly by the pressure contours at various
Reynolds numbers as shown in Fig. 6. The
pressure deviation is defined as cZx(p-p),

where p is the average fluid density of within
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the cavity. In these figures, values of pressure
deviation are multiplied by 1,000 for the purpose
of illustration clarity. The situation becomes
worse even in regions far away from the corner
at Re=7,500 for SRT model, while the pressure
contour remains normal at this Reynolds number
for MRT model.

Fig. 7 illustrates the comparison of u and v
velocity distributions very close to the left
vertical wall (i=2 lattice point) for SRT and MRT
models at RE=7,500. Results clearly show that
the velocity distributions (both u- and v-velocity)
by SRT model present obvious spatial oscillations
close to the upper-left corner, while the velocity
distributions by MRT model present much less
gpatial oscillation in the same region of interest.
In general, the spatial oscillation of solution
around the upper-left corner becomes worse as
Reynolds number increases. The difference
represents that MRT model is more suitable, as
compared with SRT model, for treating flow
around geometrical singularity and potentially
higher Reynolds-number flows, at least, for

steady flows.

Finally, sensitivity of selecting the
relaxation parameters (S,, S;, S; and S;)

has shown (Fig. 8 for RE=1000, 64x64 lattice
points) to be relatively small once their values
are close to 1.1. For values of the relaxation
parameters close to 1.9, the gpatial oscillations
of the u- and v-velocity appear to be serious.
Also the deviation increases with increasing
Reynolds number as expected. Note that for the
results presented in the above, they are all set to
1.1 for the simplicity, unless otherwise specified.

IV. CONCLUSIONS

In the current study, an upper, lid-driven
cavity flow is simulated by parallel lattice
Boltzmann method using multi-relaxation time
scheme. Results are then compared with those
by LBM using single-relaxation time scheme
and previous published data using N-S solver. In
general, results using MRT and SRT techniques
are both in good agreement with those using N-S
solver for Re=100-7500 for the most part of the
flow within the cavity. In summary, we can
conclude that MRT technique is superior to SRT
technique in simulating higher Reynolds number
flows having geometrical singularity with much
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less gpatia oscillations due to the different
relaxation rates for different physical modes
embedded in the MRT scheme. In addition, the
code using the MRT model takes only about
15% more CPU time than that using SRT model.
Test for unsteady (periodic) flow, e.g., a flow
past an obstacle with votex shedding using MRT
technique is currently in progress and will be
reported in the near future.
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Fig.6 Normalized pressure contours at Re=7,500
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