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Abstract 

Two-dimensional near-incompressible steady lid-driven cavity flows (Re=100-7,500) are simulated 
using multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK method (LBGK). Results 
are compared with those using single-relaxation-time (SRT) model in the LBGK method and previous 
simulation data using Navier-Stokes equations for the same flow conditions. Effects of variation of 
relaxation parameters in the MRT model, effects of number of the lattice points, improved computational 
convergence and reduced spatial oscillations of solution near geometrically singular points in the flow field 
using LBGK method due to MRT model are highlighted in the study. In summary, lattice Boltzmann method 
using MRT model introduces much less spatial oscillations near geometrical singular points, which is 
important for the successful simulation of higher Reynolds number flows. 
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I. INTRODUCTION 

The lattice Boltzmann equation (LBE) 
using relaxation technique was introduced by 
Higuerea and Jimenez [1] to overcome some 
drawbacks of lattice gas automata (LGA) such 
as large statistical noise, limited range of 
physical parameters, non-Galilean invariance, 
and implementation difficulty in 
three-dimension problem. In the original 
derivation of LBE using relaxation concept, it 
was strongly connected to the underlying LGA. 
But it was soon recognized that it could be 
constructed independently [2]. Since then, the 
lattice Boltzmann methods (LBM) have received 
considerable attention as an alternative to 
traditional computational fluid dynamics for 

simulating certain complex flow problems. The 
simplest LBE is the lattice 
Bhatnager-Gross-Krook (LBGK) equation [3], 
based on a single-relaxation-time (SRT) 
approximation. Due to the extreme simplicity, 
the lattice BGK (LBGK) equation [4] has 
become the most popular lattice Boltzmann 
model in spite of its deficiencies, for example, in 
simulating high-Reynolds numbers flow.  

In the LBM, fluid is modeled by particles 
moving on a regular lattice. At each time step 
particles propagate to neighboring lattice sites 
and re-distribute their velocities in a local 
collision phase. The inherent locality of the 
scheme makes it perfect for parallel computing 
[5], whose advantage will be taken in the current 
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study. Through Chapman-Enskog multi-scale 
expansion [6], the complicated, nonlinear 
compressible Navier-Stokes equations can be 
recovered from the simple, linear LBGK 
equation based on the assumptions that, first, 
Mach number is small, and, second, the density 
varies slowly in the flow field. Thus, the LBM 
has been applied mostly to compute the flow 
field in near-incompressible limit. In particular, 
the LBGK method has been successfully applied 
to problems of near-incompressible flows 
through porous media [7], multiphase flows [8] 
and dynamics of droplet breakup [9], to name a 
few.  

However, there exist some deficiencies in 
solving higher Reynolds number incompressible 
flow problems or resolving flow fields near 
geometrically singular points using 
single-relaxation-time (SRT) LBM [10,11]. On 
one hand, the fluid density is required to be 
nearly constant for nearly incompressible flows 
and the pressure is proportional to the local 
density field. On the other hand, pressure and 
shear stress are singular near the geometrically 
singular points (e.g., sharp corners). Hence, it 
often causes unphysical, strong local spatial 
oscillations near these singular points, which 
turns out to contaminate the flow field far away 
from these singular points. Previous work 
originally developed by D'Humieres [11], and 
further extended by Lallemand and Luo [12] 
suggests that the use of a multi-relaxation-time 
(MRT) model can improve the numerical 
stability and reduce dramatically the unphysical 
oscillations for some simple flows. They 
concluded that using MRT model in the LBM in 
these simple flows can significantly reduce the 
spatial oscillation near the singular points and 
improves the quality of the solution at higher 
Reynolds number. However, there is no 
systematic study in revealing the limits of 
applying the MRT model in the LBM for higher 
Reynolds number flows, which have 
complicated flow features.  

II. NUMERICAL METHOD 
II.1 Lattice Boltzmann Method with SRT 
model 

LBM method solves the microscopic 
kinetic equation for particle distribution f(x,v,t), 
where x and v is the particle position and 
velocity vector, respectively, in phase space (x,v) 

and time t, where the macroscopic quantities 
(velocity and density) are obtained through 
moment integration of f(x,v,t).  The most 
popular used LBM equation is the 
single-relaxation-time LBGK model [4], and 
listed as follows,  
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Note that τ is the collision relaxation time. 

The 9-velocity LBE model on the 2-D 
square lattice (Fig. 1), denoted as the D2Q9 
model, is used in the current study for simulating 
the steady lid-driven cavity flow. For isothermal 
near-incompressible flows, the equilibrium 
distribution function can be derived as the 
following form [6]: 
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The density and velocities can be computed 
simply by moment integration as  
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Application of the multi-scale technique 
(Chapman-Enskog expansion) yields the 
Navier-Stokes equation with the pressure 

2
scp ρ= , where 

3
ccs = , and an advection term 

with Galilean invariance. The viscosity of the 
simulated fluid is 22 )

2
1()

2
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However, the simplicity has to pay the price of 
necessarily using square lattices of constant 
spacing (∆x=∆y) and consequently lead to the 
unity of the Courant-Fridrich-Levy (CFL) 
number due to tyx ∆=∆=∆ . 

With the choice of viscosity in the above, 
Eq. (1) is formally a second order method 
(excluding the boundary conditions) for solving 
near-incompressible flows [6]. Physical and 
numerical constraints require that 2/1/ >∆tτ  or 
equivalently 2<ω . In general, Eq. (1) is solved 
in two steps:  

collision step: 
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streaming step:  
),(),( * ttxftttexf iii ∆+=∆+∆+        (7b) 

which is known as the LBGK method [13]. Note 
that, in the above, * denotes the post- collision 
values. It is obvious that the collision process is 
completely localized, and the streaming step 
requires little computational effort by advancing 
the data from neighboring lattice points that 
makes Eq. (1) perfect for parallel implementation, 
which will be shown in detail later. 

Previous experience in obtaining solutions 
at higher Reynolds numbers using SRT model of 
the LBE method has shown that the solution 
field (u,v,p) often exhibits spurious spatial 
oscillations in regions of large gradient such as 
stagnation point and sharp concave corners [10]. 
For example, it has shown that the serious 
spatial oscillations of pressure field can be 
clearly observed at Reynolds number of 5,000 
with 256x256 lattice points at the upper two 
concave corners [10]. Depending upon the 

geometry and flow problem, such spatial 
oscillation may even propagate to contaminate 
the flow solutions in the regions far away from 
the singular points. In addition, the spatial 
oscillations in the solution can strongly affect 
the computational stability and convergence rate. 
Of course, the LBE using SRT model can always 
improve its computational stability and 
convergence by increasing the number of lattice 
points in the computational domain, although it 
is not recommended in general. Therefore, to 
develop a similar LBE technique but simple 
enough in implementation is strongly required to 
resolve the above-mentioned deficiencies. 

II.2 Lattice Boltzmann Method with MRT 
model 

Recently, Lallemand and Luo [12] 
suggested that the use of a MRT model could 
improve the numerical stability and reduce 
dramatically the unphysical oscillations for some 
simple flows. They have performed detailed 
theoretical analysis on the dispersion, dissipation 
and stability characteristics of a generalized 
lattice Boltzmann equation model proposed by 
d'Humieres [6]. They have found that the MRT 
model is equivalent to the SRT model in the long 
wavelength (low wave number) limit for 
macroscopic variables of interest in various 
simple flows through the linearized analysis [12]. 
Difference between two relaxation models is 
identified as a high-order effect (short 
wavelength limit), which can hardly detected in 
simple flows. It is well known that geometrically 
and mathematically singular pointes can 
adversely affect the flow solution in short 
wavelength limit. We would thus expect, at least, 
the solution of MRT model near the singular 
point is appreciably different from that of SRT 
model. For convection-dominated flows, the 
local difference near the singularities may also 
lead to large differences in flow regimes far 
away. Thus, it is important to understand how 
the solution using MRT model is different from 
that using SRT model. In addition, it is 
potentially useful to compute flows at higher 
Reynolds numbers using MRT model in LBM. 
In what follows, we will briefly summarize the 
important features of MRT model [12] as 
compared with those of SRT model. 

Lallemand and Luo [12] have defined a 
new column vector of macroscopic variables 
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where M  is a 9x9 matrix transforming F  
to R . In the column vector R , ρ is the fluid 
density, ε  is related to the square of the energy 
e, xj  and yj  are the mass flux in two 
directions, xq  and yq  correspond to the 
energy flux in two directions, and xxp  and xyp  
correspond to the diagonal and off-diagonal 
component of the viscous stress tensor. One 
immediate advantage of the MRT model is that 
macroscopic variables of interest can be 
obtained readily by simply performing the 
matrix multiplication FM  if F  is known. In 
addition, due to the conservation of mass and 
momentum before and after particle collision, 
the total mass and momentum should not relax 
at all. However, Eq. (7a) in standard LBGK 
method requires all fi's are relaxed at the same 
rate and, hence, all macroscopic quantities of 
interest. Physically speaking, different physical 
modes should have different relaxation rates. By 
taking this into account in the MRT model, 
based on Eq. (7a), the collision procedure for 

*R  is performed as follows, 
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where * denotes the post-collision state, S  is 
the 9x9 diagonal matrix, which will be shown 
later. In S , s1=s4=s6=0 enforces mass and 
momentum conservation before and after 
collision. Note that the equilibrium values in 

*
R  can be written as [12] 
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Before the streaming step, Eq. (7b), is performed, 
one needs to transform the post-collision values, 

*R , back to *F  by using Eq. (9), 

)(1*1* eqRRSMFRMF −−== −−   (11) 

where S  is the diagonal matrix,  
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Finally, the streaming step for all fi's in the MRT 
model is performed exactly the same as in the 
standard LBGK model using Eq. (7b). 

Lallemand and Luo [12] have shown that 
the MRT model can reproduce the same 
viscosity as that by SRT model if we set 

τ198 == ss . Once this is decided, the rest of the 
relaxation parameters ( 2s , 3s , 5s  and 7s ) for 
different physical modes can then be chosen 
more flexibly. In Ref. 12, they recommended the 
values to be slightly greater than unity. In this 
research, we will make some sensitivity study of 
these parameters in the current test case to see if 
complicated flow has different optimum values. 
Finally, it is worthy to note that the MRT model 
reduces to the SRT model by simply setting 
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II.3 Boundary conditions 

Stationary Wall Boundary Conditions 

How to properly implement the wall 
boundary conditions within LBM framework is 
still an ongoing research topic [14] and reference 
cited therein. The most often-used scheme is the 
so-called "bounce back" scheme, which has been 
argued that it is only of first-order accuracy as 
compared with of second-order accuracy for 
LBM formulation. However, it was recently 
shown that the error is sufficiently small if the 
relaxation parameter ω (or 1/τ) is chosen to be 
close enough to 2 [14]. Thus, we believe that the 
bounce-back boundary conditions in the current 
study shall not influence the order of accuracy of 
LBM using SRT and MRT models if we choose 
ω to be within some range.  

Moving Wall Boundary Conditions 

For the current problem, we have assumed 
equilibrium distribution function at the upper 
moving plate, which is computed by substituting 
the uniform plate velocity into Eq. (2) and the 
initial density assignment. After streaming, the 
velocity at the top plate is reinforced to be the 
uniform plate velocity and then the equilibrium 
distribution function is reevaluated using the 
fixed plate velocity and the updated density at 
the plate. In the current study, the upper two 
corner lattice points are considered as the part of 
the moving plate. The uniform top plate velocity 
is U=0.1, considering the validity of using LBM 
in simulating near-incompressible flows. 

III. RESULTS AND DISCUSSIONS 

To clearly demonstrate and test the 
advantages of LBM using MRT model over that 
using SRT model, we compute a steady, upper 
lid-driven flow (Re=100-7,500) by LBM using 
both MRT and SRT models. We compare various 
macroscopic variables of interest in regions of 
both large and small gradients. In addition, 
results from the LBM using MRT and SRT 
models are compared with those of N-S solvers 
by Ghia et al. [15] where it is appropriate. 

Fig. 2 demonstrates the typical test of grid 

sensitivity (64x64 and 256x256 lattice points) by 
comparing the velocity profiles (Re=1,000) at 
the centerline of the cavity for both SRT and 
MRT models with the data by Ghia et al. [15], 
which has been considered to be the most 
comprehensive computation for the impressible 
lid-driven cavity flow. It is clearly shown that 
the difference of velocity distributions between 
the current study and Ghia et al. [15] is very 
small at 256x256 lattice points. Also the 
difference between MRT and SRT models is 
nearly undistinguished at this Reynolds number 
of 1,000. Similar trends are found for other 
Reynolds numbers up to 7500 for both MRT and 
SRT models. Thus, all results discussed in the 
followings are computed using 256x256 lattice 
points, unless otherwise specified. 

Fig. 3 shows the simulated velocity vectors 
for Reynolds number of 7500 for both SRT and 
MRT models. Note that only MRT model is able 
to predict the fourth minor vortex in the lower 
right-hand corner, which is also a geometrically 
singular point, while SRT model fails to predict 
the fourth minor vortex at this corner. 

Simulated location (x- and y-coordinate) of 
major central vortex as a function of Reynolds 
numbers by both SRT and MRT models along with 
previous data by Ghia et al. [15] using is illustrated 
in Fig. 4. The results of the present work and that 
of Ghia et al. [15] are in excellent agreement 
within 0.8% for all Reynolds numbers, except for 
Re=2000, where the data is provided by Ghia et al. 
[15]. In addition, excellent agreement between 
STR and MRT models is also found. 

Fig. 5 shows the vorticity distribution using 
both SRT and MRT models at Re=7,500. It is clear 
that the vorticity distribution using these two 
models is approximately the same for Re=100, 400, 
1000 and 2000. However, for Re=7,500 (similarly 
for Re=5,000), there exists obvious vorticity 
"jiggles" around the upper two cavity corners using 
SRT model, especially the left-hand one due to the 
geometrical singularity at this corner. 

The above-mentioned differences for SRT 
and MRT models are highlighted again more 
clearly by the pressure contours at various 
Reynolds numbers as shown in Fig. 6. The 
pressure deviation is defined as )(2 ρρ −×sc , 
where ρ  is the average fluid density of within 
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the cavity. In these figures, values of pressure 
deviation are multiplied by 1,000 for the purpose 
of illustration clarity. The situation becomes 
worse even in regions far away from the corner 
at Re=7,500 for SRT model, while the pressure 
contour remains normal at this Reynolds number 
for MRT model. 

Fig. 7 illustrates the comparison of u and v 
velocity distributions very close to the left 
vertical wall (i=2 lattice point) for SRT and MRT 
models at RE=7,500. Results clearly show that 
the velocity distributions (both u- and v-velocity) 
by SRT model present obvious spatial oscillations 
close to the upper-left corner, while the velocity 
distributions by MRT model present much less 
spatial oscillation in the same region of interest. 
In general, the spatial oscillation of solution 
around the upper-left corner becomes worse as 
Reynolds number increases. The difference 
represents that MRT model is more suitable, as 
compared with SRT model, for treating flow 
around geometrical singularity and potentially 
higher Reynolds-number flows, at least, for 
steady flows. 

Finally, sensitivity of selecting the 
relaxation parameters ( 2s , 3s , 5s  and 7s ) 
has shown (Fig. 8 for RE=1000, 64x64 lattice 
points) to be relatively small once their values 
are close to 1.1. For values of the relaxation 
parameters close to 1.9, the spatial oscillations 
of the u- and v-velocity appear to be serious. 
Also the deviation increases with increasing 
Reynolds number as expected. Note that for the 
results presented in the above, they are all set to 
1.1 for the simplicity, unless otherwise specified.  

IV. CONCLUSIONS 

In the current study, an upper, lid-driven 
cavity flow is simulated by parallel lattice 
Boltzmann method using multi-relaxation time 
scheme. Results are then compared with those 
by LBM using single-relaxation time scheme 
and previous published data using N-S solver. In 
general, results using MRT and SRT techniques 
are both in good agreement with those using N-S 
solver for Re=100-7500 for the most part of the 
flow within the cavity.  In summary, we can 
conclude that MRT technique is superior to SRT 
technique in simulating higher Reynolds number 
flows having geometrical singularity with much 

less spatial oscillations due to the different 
relaxation rates for different physical modes 
embedded in the MRT scheme. In addition, the 
code using the MRT model takes only about 
15% more CPU time than that using SRT model. 
Test for unsteady (periodic) flow, e.g., a flow 
past an obstacle with votex shedding using MRT 
technique is currently in progress and will be 
reported in the near future. 
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Fig. 1 D2Q9 model Fig. 2 Velocity profiles for u, v along the geometric centerline of the cavity 

 
Fig.3 Streamline plot at Re=7500 Fig.4 The location of the center of the 

primary vortex for different values of 
Reynolds, SRT and MRT models 
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Fig. 5 Contour plots of vorticity at Re=7,500 

 

            
Fig.6 Normalized pressure contours at Re=7,500 

 

       
Fig. 7 Comparison of the velocity profiles at Re=7,500 (i=2) 

 

        
Fig. 8 Sensitivity of the selecting relaxation parameters of the velocity profiles at i=2, Re=1,000

 


