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• Carbon dioxide (CO2) had been 

used as a refrigerant for 

compression refrigeration system as 

early as 1880. 

• Non-toxic, non-combustible, low 

cost and readily available. 

• CO2 Refrigerant is used over 80% 

in fishing vessel and relevant 

transportation. 

• Carbon dioxide was greatly phased 

out when synthetic refrigerant was 

invented since 1920. 

• From 1990, the concerns on 

environmental concerns has revived 

the comeback of CO2.  

General Background for CO2  Refrigeration 

Stera  A. Ammonia refrigerating plant on reefer ships. 
Introduction to ammonia as a marine refrigerant. Lloyd’s 
Register Technical Seminar, London; 1992. 
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Typical CO2  Heat Pump Water Heater 
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Thermodynamic and transport properties of CO2 

near the critical point 

 
• Near the critical point, density, enthalpy and entropy changes considerably. 

Specific heat shows a spike phenomenon. The peak is especially 

pronounced at the “pseudo” critical point. 
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• When the pressure is increased above the critical pressure, 

each pressure value corresponds to an extreme value. This 

temperature with extreme specific heat value is called pseudo-

critical temperature. This pseudo-critical temperature will 

increase as the pressure rises, but the spike of the maximum 

value of the specific heat becomes less evident with increasing 

pressure. 
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Typical CO2 refrigerating cycle is above the critical point. The expansion 

process and the evaporation process are in the subcritical region. 

Therefore, CO2 refrigeration cycle operates across supercritical and 

subcritical  point region and they are called the Transcritical Cycle. 

Because the temperature of the critical point of carbon dioxide is low 

(about 31.1 ° C). Therefore, for the normal ambient temperature, no 

condensing occurs and single-phase gas cooling is encountered.  

                          CO2                                                   R-134a 
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Typical  P-h diagram for CO2 & conventional 

refrigerant 
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COP of the Refrigerants 

9 
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Comparison between CO2, R410A & 

R-407C 
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Aim of this study: develop a simulation program for 

CO2 refrigeration cycle. 



• There is a big difference between carbon dioxide 
refrigeration cycle and traditional refrigerants. 
The critical temperature and critical pressure of 
CO2 are 31.1C and 78.8 Bar in room temperature 
applications (such as outside air at 35 C), and the 
refrigerant will operate above the critical point. 

• CO2 refrigerant can’t be cooled by ordinary 
condenser. CO2  is cooled by near single-phase 
gas. Normally we call the heat exchanger as Gas 
Cooler rather than condenser. 

Literature Reviews 
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The CO2 refrigeration Cycle 

contains four major components, 

including a gas cooler, an 

evaporator, a compressor and an 

expansion valve.  

Simulation method 
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The compressor calculations assume for the isentropic adiabatic process. First, 

we can generate equation by the continuity equation and the energy equation. 
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isentropic efficiency and volumetric efficiency for the compressor 

Compressor Model 
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Objective: Simulation of the Targeted HX – A 
Tube-in-tube HX (Double Pipe HX) 

• The heat exchanger is a tube-in-tube type, and the 

water flows counter-currently against the coolant 

(carbon dioxide) during the heat exchanging process.  

Gas Cooler Model 
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Discretizing the HX due to significant 
change of physical properties 

       Due to considerable change of physical properties, especially near pseudo-critical 

temperature, the heat exchanger must be subdivided into many small segments. 
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Basic equations 

• Energy balance/pressure drop amid water and coolant can 

be written in the following equations: 

 

1 1 1 2 1 1 2( ) ( )c c a a w w b bQ m Cp T T m Cp T T       

1 1 1( ) ( )Q UA LMTD 
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2 1
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c
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(2) 
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Physical Configurations 

• Each segment has three 
unknown parameters. (water 
temperature, CO2 temperature 
and CO2 pressure ).  

 

• There are three equations for 
each segment.  

 

• The unknown parameters can 
thus be solved through these 
equations. 
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HTCs in CO2 & water 

• For CO2, Dang and Hihara (2004) correlation： 

 

  

  

• For water, Genielinski方程式： 
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Algorithm for Solution of the Gas 
Cooler 

 1. List the basic equations. 

   2. Make the properties of fluid into these equations. 

 3. Decide the segment number for calculation, and build       

         the completed equation sets through do loops. 

 4. Start iterating. 

 5. Print out the results if the equations are convergent. 
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Results and Discussion 

• For validating the proposed model, calculation is compared with the 
measurements of Pitla et al.   

  Tc,in (℃) Pc,in(Mpa)  Tw,in (℃) Mc (kg/s) Mw (kg/s) 

Run1 121.2 9.44 20.8 0.01963 0.04011 

Run2 126 11.19 24.2 0.0274 0.040497 

Run3 73.3 13.33 36.12 0.02043 0.12914 

Run4 123.5 10.8 27.21 0.02862 0.084087 

Run5 107.2 8.11 24.2 0.0198 0.0455 

Run6 123.4 8.98 22.3 0.02996 0.067864 

Run7 118.3 7.79 21.2 0.02123 0.066434 

Run8 115.8 8.60 18.9 0.03436 0.084087 

Run9 114.9 8.76 18.9 0.03638 0.065091 

Run10 113.4 9.50 15.9 0.03825 0.109052 

Pitla et al. had conducted CO2 tube-in-tube heat exchanger with ID = 0.00472m 
and OD = 0.00635m for inner tube, ID = 0.01575m for outer tube. 

http://www.nctu.edu.tw/
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The calculations are in line with the experimental measurement, suggesting the applicability 
of the present modeling. 
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Results and Discussion 
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(c)               (d) 

x/L  ( from the inlet of Cmin )

Q

x/L  ( from the inlet of Cmin )

Q
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x/L  ( from the inlet of Cmin )

Q Q
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(c)               (d) 

Schematic of the variation 
of the local heat transfer 
rate for a tube-in-tube heat 
exchanger: (a) Constant 
property, CminCmax; (b) 
Constant property, Cmin = 
Cmax; (c) CO2 flow across 
the pseudo-critical point; 
and (d) Variable property. 
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Concluding remarks for Gas Cooler 
• Unlike conventional working fluid which normally shows a monotonically 

decrease of local heat transfer rate along the tube length, the CO2 shows a 

different trend as compared to typical sub-critical fluids. 

• The local heat transfer rate does not monotonically decrease with the tube length. 

• In fact, a plateau occurs somewhere inside the heat exchanger. Moreover, a 

second maximum is seen when p is below 10 MPa, yet a significant of recovering 

of local heat transfer rate is encountered for p = 8 MPa despite the maximum 

temperature difference still occurs at the water inlet.  

• The phenomenon is attributed to the significant rise of specific heat of CO2 near 

pseudo critical temperature.  

• The effect of tube diameter plays a crucial role of CO2 HX, this is especially 

pronounced when the thermal resistance is on the CO2 side. 
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The calculation condition is based on the continuity 

equation, energy equation and pressure drop equations:                    

Agrawal et al. [14]  pressure drop equation : 
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Lin et al. [15]  empirical formula can calculate the friction coefficient of the two-

phase flow : 

Capillary tube Model 
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The capillary tube is further divided into many small 

segments to calculate pressure (Δp) and quality(x) alongside 

the capillary tube. The outlet quality and exit pressure is also 

obtained. 

The refrigerant flow out from the condensation region and 

through a smooth tube in single-phase liquid. It’s change 
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Evaporator Model 

• Fin-tube heat exchanger in evaporator region. Fluid 

flow pattern is a counter-cross flow. CO2 refrigerant 

is flowing in the tube and the air is flowing outside 

the tube. 

Wet coil Analysis 

Method 
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Heat exchanger width W 

Heat exchanger height H 

Tube diameter        
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Threlkeld (1970) for wet coil analysis: 

ia,i , ia,o: inlet and outlet of air enthalpy 

ir,i : corresponding saturated air enthalpy evaluated at the inlet refrigerant temperature 

ir,o : corresponding saturated air enthalpy evaluated at the outlet refrigerant temperature 
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Basic Equations 

Two-phase region 

1 1(1- ) ( - )c c fg a a aoQ m i x m i i    

1 1 1( ) ( )cQ UA LMHD 

Single-phase region 

2 1( - ) ( - )c c c co s a ai aQ m Cp T T m i i    

2 2 2( ) ( )cQ UA LMHD 

Total heat exchange area 1 2totalA A A 
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Evaporator 

– Refrigerant side  

– Hihara  and  Tanaka (2000)  correlation： 
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The first step is assuming the compressor inlet pressure, inlet temperature, 

outlet pressure. With these three values, one can calculate the mass flow rate of 

refrigerant. After 2 → 3 adiabatic process, the discharge compressor temperature 

can be obtained. 3 → 4 One can obtain a outlet temperature and enthalpy using 

the gas cooler model. Thus the exit state after capillary tube can be obtained via 

the 4 → 1 using capillary model. Checking whether the outlet pressure is the 

same pressure as the original guess. If it is different, we must re-assume the 

compressor outlet pressure. 1 → 2 Entering the evaporator and calculate the heat 

transfer rate with air. If it does not satisfied the energy balance equation in 

evaporation region, we should re-assume the initial value from the first step. 

P

h

1 2

34

Input parameters 

Gas cooler dimensions (di, do, Di, L) 

Evaporator dimensions (di, do, Di,W, H...) 

Expansion device dimensions (dc, Lc) 

Compressor data: Vs, N 

Water inlet conditions (mw, Twi) 

Air inlet conditions (ma, Tdb, Twb) 

The calculation process make use the  

following assumptions: 

1. Heat loss is negligible 

2. Steady state 

3. No pressure drop in gas cooler & evaporator  

4. Ignore the change of kinetic and potential    

energy in capillary tube 

Cycle Analysis Method 
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Simulation results 
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Predictions vs. Measurements 

 

-5%

Predicted  COP

3.6 3.8 4.0 4.2

M
e
a

s
u

r
e
d

  
C

O
P

3.6

3.8

4.0

4.2

+5%

http://www.nctu.edu.tw/


 Dry bulb temperature ( 
o
C )

16 18 20 22 24 26 28 30

R
ef

ri
g
er

an
t 

m
as

s 
fl

o
w

 r
at

e 
( 

k
g

s-1
 )

0.03

0.04

0.05

0.06

0.07

Vfr = 8.5 CMM 

Vfr = 15 CMM 

 Dry bulb temperature ( 
o
C )

16 18 20 22 24 26 28 30

C
O

P

2

3

4

5 Vfr = 8.5 CMM 

Vfr = 15 CMM 

 Dry bulb temperature ( 
o
C )

16 18 20 22 24 26 28 30

P
re

ss
u
re

 (
 M

P
a 

)

2

4

6

8

10

12

14

Compressor outlet , Vfr = 8.5 CMM

Compressor outlet , Vfr = 15 CMM

Compressor inlet , Vfr = 8.5 CMM

Compressor inlet , Vfr = 15 CMM

 Dry bulb temperature ( 
o
C )

16 18 20 22 24 26 28 30

  
  

  
  

H
ea

t 
tr

an
sf

er
 r

at
e 

an
d

 p
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

 W
at

t 
)

2000

4000

6000

8000

10000

Gas cooler , Vfr = 8.5 CMM

Gas cooler , Vfr = 15 CMM

Evaporator , V = 8.5 CMM

Evaporator , Vfr = 15 CMM

Compressor , Vfr = 8.5 CMM

Compressor , Vfr = 15 CMM

(a) 

 

(b) 

 

(d) 

Fig. 9., Ncom=5000rpm. 

Effect of the dry bulb air temperature on (a) refrigerant mass flow rate (b) COP (c) 

pressure (d) heat transfer rate. With RH=50%, Twi=20℃, Mw=0.08kgs-1, Lcap=2.0m, 

d,cap=1.4mm 
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Fig. 10. Effect of the wet bulb air temperature on (a) refrigerant mass flow rate (b) COP 

(c) pressure (d) heat transfer rate. With Vfr=8.5CMM, Twi=20℃, Mw=0.08kgs-1, Lcap=2.0m, d,cap=1.4mm, Ncom=5000rpm. 

Effect of the RH on the (a) refrigerant mass flow rate (b) COP 
(c) pressure (d) heat transfer rate. With V = 8.5 CMM, 
Twi=20℃, Mw=0.08kgs-1, Lcap=2.0m, d,cap=1.4mm, 
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Effect of compressor speed on (a) refrigerant mass flow 
rate (b) COP (c) pressure (d) heat transfer rate. With Tdb 
= 27℃, Twb=20℃, V=8.5CMM, Twi=10℃, Mw=0.2kgs-1, 
Lcap=2.0m, dcap = 1.4mm. 
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Effect of the capillary tube length on (a) refrigerant 
mass flow rate (b) COP (c) pressure (d) heat transfer 
rate. With Tdb=27℃, Twb=20℃, V=8.5CMM, Twi=10℃, 
Mw=0.2kgs-1 
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Conclusions 
• This study develops a simulation program of CO2 refrigerant cycle system. The simulation 

program is capable of handling the variation of indoor conditions, gas cooler, compressor 

speed, and geometry of capillary tube without any prescribed conditions (i.e. fixed 

evaporation temperature, fixed condensing temperature, and the like). 

• In gas cooler, the CO2 may present a local minimum and a local maximum along the length 

of the heat exchange, provided CO2 passes through the pseudo-critical temperature, and 

this phenomenon becomes more and more pronounced when the pressure is close to the 

critical pressure 

• The RH of the indoor air is an important factor affecting the overall system performance. 

• Increasing the water side inlet temperature or increasing the compressor speed will decrease 

COP of the system. 

• An increase of the length of capillary tube also increases the COP moderately. 
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